skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Williams, Turner_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Amorphous BaTiO3 layers deposited on SrTiO3 (001) substrates at room temperature were subsequently crystallized using solid phase epitaxy (SPE). Heating an initially amorphous BaTiO3 layer in air at 650 °C for 3 h resulted in crystallization with components in two distinct crystallographic orientation relationships with respect to the substrate. Part of the volume of the BaTiO3 layer crystallized in a cube-on-cube relationship with the substrate. Other volumes crystallized in four variants of a 70.5° rotation about ⟨110⟩, resulting in a ⟨221⟩ surface normal in each case. Each of these four variants forms a Σ = 3 coincident site lattice with respect to the SrTiO3 substrate and the cube-on-cube oriented BaTiO3. Heating for the same duration and temperature in a reducing gas atmosphere resulted in the formation of polycrystalline BaTiO3 with no preferred crystallographic orientation. The dependence on the gas atmosphere indicates that it may be possible to tune the annealing time, temperature, and atmosphere to produce a single crystalline BTO on STO by SPE or produce a desired distribution of orientations. 
    more » « less